
This is the author’s version of an IEEE-copyrighted article. The definitive version was published in Proceedings of the 23rd International

Symposium on Software Reliability Engineering (ISSRE 2012), Dallas, USA (available at http://ieeexplore.ieee.org).

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for

advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

A Comprehensive Code-based Quality Model for Embedded Systems

Systematic Development and Validation by Industrial Projects

Alois Mayr, Reinhold Plösch

Department of Business Informatics

Johannes Kepler University

Linz, Austria

{alois.mayr1, reinhold.ploesch}@jku.at

Michael Kläs, Constanza Lampasona

Fraunhofer IESE

Kaiserslautern, Germany

{michael.klaes, constanza.lampasona}

@iese.fraunhofer.de

Matthias Saft

Corporate Technology

Siemens AG

Munich, Germany

matthias.saft@siemens.com

Abstract—Existing software quality models typically focus

on common quality characteristics such as the ISO 25010

software quality characteristics. However, most of them

provide insufficient operationalization for quality assessments

of source code. Moreover, they usually focus on software in

general or on information systems and do not sufficiently cover

the particularities of embedded systems.

We have developed a quality model that covers quality

requirements for source code that are specific for embedded

systems software. It provides comprehensive operationalization

(with 336 measures) for C and C++ systems, which allows for

largely automated quality assessments.

The empirical evaluations performed acknowledge

moderate completeness of the requirements and the associated

measures. Therefore, we still see room for improvements to

allow covering even more aspects of embedded systems

software quality. Nevertheless, the empirical validation (based

on three industrial products) shows good concordance between

the results gained by the automatic model-based assessment

and independent expert judgment on code quality.

Keywords— quality assessment, embedded systems software,

code quality, ESQM, SQUAD

I. INTRODUCTION

In recent decades, the integration of computer systems into
various areas of daily life, e.g., medical instruments, power
generation, or automotive components, has increased
significantly. Potential malfunctions of embedded systems
(ES) may harm human beings or the environment as
described in [25]. More and more functionality of ES is
provided by software, leading to a dramatic increase in
software complexity. Therefore, software quality is of
particular importance in designing and developing ES, even
more so than in other application domains such as
information systems [10].

In fact, various analytical or constructive approaches
have emerged for assuring or improving quality during
development, e.g., model-based development, dynamic
testing, and static analysis techniques. They are seen as
complementary rather than substitutive. In the model-based
development of automotive ES, in particular, the generated
code has lower defect density than manually implemented
code and thus, the need for systematic code-centered
automatic quality assessment is lower. Nevertheless, outside

the automotive domain, especially for medical instruments,
power generation, or industrial automation in general,
embedded systems are typically coded manually, with only
small fractions of the code generated from more abstract
models. The VDC Research Group conducts extensive
worldwide surveys of embedded development projects on a
yearly basis and the 2010 survey [32] shows that C and C++
are still the leading languages for ES software development.

In this context, many companies are interested in
applying software quality models, which can be a means for
systematically analyzing and monitoring the quality of
software and thus allow early feedback on quality [29][30].

Therefore, in the absence of an operationalized quality
model addressing the particularities of ES, our objective is to
develop an ES software quality model (ESQM) that provides
the means for justified and comprehensive assessments of
the source code quality of ES software in a quick and
repeatable manner. The intended usage scenarios of ESQM
are one-time assessments and comparison of different
products as well as continuous controlling of the status of a
product’s internal software quality. Predicting quality is
explicitly not an intended scenario. Additionally, we want to
demonstrate the usefulness and practical applicability of
ESQM by validating it in the context of industrial projects.

This work makes three major contributions. To the best
of our knowledge, we provide (1) the first rigorously
developed and validated quality model for ES software that
is equipped with operationalization for C and C++ products;
(2) a tested approach for iteratively developing a quality
model for specific types of software, including an explicit
meta-model that clearly structures the basic concepts of the
quality model; and (3) support for performing largely
automated quality assessments of ES source code, whose
results appear to be consistent with the experience of a
quality expert for the investigated industrial ES products.

In section II, we provide an overview of related work,
with a focus on existing quality models for ES software.
Next, in section III, we outline the four-phased approach
used for developing the ESQM. In the four subsequent
sections (IV to VII), each phase is described in more detail,
including the objective of the phase, results, and performed
validations. Finally, section VIII discusses threats to validity
and section IX summarizes the presented work and provides
directions for future research.

This is the author’s version of an IEEE-copyrighted article. The definitive version was published in Proceedings of the 23rd International

Symposium on Software Reliability Engineering (ISSRE 2012), Dallas, USA (available at http://ieeexplore.ieee.org).

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for

advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

II. RELATED WORK

Software product quality has been a subject of research in
various institutions and research groups pursuing similar
goals. This has led to a number of quality models with
diverse purposes and facets. Depending on the purpose, these
contributions include models for the taxonomic specification
of the term software quality (e.g., the models of McCall and
Boehm discussed in [15], or the models in the standards ISO
9126 and 25010 [12]), measure-based quality models (e.g.,
the Maintainability Index [7]), prediction models (e.g., for
quality [28], reliability [19] or defects [18]).

In [16], Kläs et al. present a comprehensive approach to
classifying quality models and identify relevant ones in a
goal-oriented way. The authors developed a systematic
classification scheme for quality models and provided an
exemplary landscape of existing quality models. Taking the
proposed classification into account, we focus in this related
work section on quality models that address the context of
the embedded systems domain, consider the object source
code, and support at least one of the following purposes:
specify, measure, or assess software quality.

Although quality models that do not explicitly address
the ES domain could theoretically also be used for assessing
ES code, they are typically too abstract (e.g., [12]) or do not
consider the programming languages most commonly used
in this domain (C/C++) (e.g., [31]). Moreover, the specifics
of ES software, e.g., limited memory consumption, are not
sufficiently addressed by these models.

In the domain of ES software, there is some work on an
embedded software component quality model (see e.g., [5],
[2]). These contributions address the quality assessment of
COTS components for ES software for certification and
verification purposes. The authors extend and operationalize
the ISO 25010 quality characteristics by defining measures
with a focus on run-time or life-cycle characteristics. In
consequence, the model neither covers internal code quality
nor is it useful for assessing and controlling the quality of ES
during development.

Wijnstra [33] identifies important quality attributes and
aspects for medical products and stresses the need for
multiple views on quality depending on different concerns.
The article rather gives advice on architectural decisions in
order to achieve certain quality attributes than providing a
quality model that would be applicable in the development
phase. Neumann et al. [24] propose a hierarchical quality
model for ES that integrates the system view focusing on
dependability with existing software quality models.
Åkerholm et al. [1] present quality attributes that are
important for ES software, in particular for automotive
software, and emphasize how component technologies can
contribute to achieving these attributes. Both Neumann et al.
and Åkerholm et al. describe and elaborate interdependencies
between identified quality attributes, but provide no
measures for operationalizing them.

In contrast, coding standards for ES software (e.g.,
MISRA [21], [22], JSF AV [13]) focus on very detailed
coding rules and thus provide clear specifications for
measurements of ES source code. Moreover, various static

code analysis tools (e.g., PC-lint or QA-MISRA) are
available for checking the compliance of the source code
with such coding rules. According to Ebert and Jones [10],
static analysis provides a great value for defect prevention
and removal in the source code of ES software. However,
these coding standards are not covered by a quality model
that would clarify the relevance of observed rule violations
for specific quality characteristics or provide the option of
tangible quality statements.

III. DEFINING THE EMBEDDED SYSTEMS SOFTWARE

QUALITY APPROACH

Our main objective was to construct a quality model that
facilitates both the description and assessment of ES
software quality based on code properties. We agreed on a
four-phase approach for developing the quality model, since
this enables us to conduct early and explicit review and
validation cycles (quality gate QG1 to 4). The purpose of the
reviews is to check our intermediate results for
comprehensibility and conformity, whereas validation
checks for completeness and minimality of the model as well
as appropriateness of the quality assessment results.
Information gained by the review and validation at the end of
each phase led to continuous improvement of the model.
Furthermore, the reviews and validations helped us to gather
and integrate the expertise of external experts (i.e., people
from other business units or organizations with experience in
embedded development and quality assurance) and allowed
us to judge whether we were still on track. Since an
exhaustive evaluation of all model elements would be too
time-consuming for the external experts participating in the
respective validation rounds, we focused in each round on a
set of randomly chosen model excerpts. The exact number of
excerpts considered in a round was determined based on the
time expected to be needed for their evaluation.

As depicted in Figure 1, the emphasis of the first phase
was on identifying and describing requirements for ES code
quality. Afterwards, in phase two we modeled the
requirements and associated proper measures. Providing
measures is of vital importance as they are decisive for the
applicability and usefulness of the model in practice. Next, in
phase three we included the ISO 25010 quality
characteristics and refined our model by introducing product
factors. In the fourth phase, we focused on providing (semi-)
automatic assessment support and thus added an assessment
model, including proper evaluation and aggregation
functions and rules. Moreover, we calibrated the assessment
model by determining realistic thresholds for the assessment

Requirements
elicitation

Identification

Categorization

QG1: Evaluation

Requirements
modeling

Modeling

Quantification

GQ2: Evaluation

Include ISO 25010
quality view

Factorization

Operationalization

Adaptation of
second version

QG3: Evaluation

Provide quality
assessment support

Specification of
evaluations

Determination of
thresholds

QG4: Validation

Figure 1: Approach for development of the quality model

This is the author’s version of an IEEE-copyrighted article. The definitive version was published in Proceedings of the 23rd International

Symposium on Software Reliability Engineering (ISSRE 2012), Dallas, USA (available at http://ieeexplore.ieee.org).

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for

advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

functions. Altogether, three organizations worked on the
quality model for three years. For modeling we used the
Quamoco approach [31] and the corresponding meta-model,
which were developed and evaluated simultaneously [17].

IV. REQUIREMENTS FOR EMBEDDED SYSTEMS SOFTWARE

PRODUCT QUALITY

The main objective of the first phase was to identify core
quality requirements for ES software. Since the ISO 9126 as
well as the ISO 25010 quality characteristics are very coarse-
grained and abstract, it is difficult to directly derive
requirements that are typical for ES code. Additionally, they
do not provide assistance for completeness checks regarding
(technical) requirements and measures once these are
defined.

That is why we decided against refining the abstract ISO
quality characteristics into measurable properties – the
approach usually taken when developing quality models –
but rather conducted a comprehensive literature analysis on
commonly accepted guidelines and quality standards for
embedded and safety-critical systems. These guidelines and
standards are a good source for eliciting specific ES quality
requirements as they directly provide (among other things)
recommendations for ES code quality.

We examined the umbrella standard for functional safety,
IEC 61508 Part 3 [11], as well as the standard for railway
applications EN 50128 [6]. These standards play a vital role
for safety-critical (embedded) systems and have led to
generic and programming language independent
requirements. The standards call for different kinds of
requirements, such as organizational, process,
methodological, or product requirements, with the latter
being the most specific and code-related ones (e.g.,
IEC 61508-3 B.1.5 Limited use of pointers).

Since we decided to initially focus the operationalization
of the quality model on C and C++ code, which is very
common for ES software [10], we did not review standards
or guidelines specific for other languages (e.g., Java).
Indeed, we considered the MISRA-C [21], MISRA-C++ [22]
guidelines as well as the JSF AV C++ coding standards [13]
for programming language-specific requirements elicitation.

The majority of the rules defined in the mentioned
guidelines address shortcomings of the C or C++ language,
e.g., unspecified, undefined, or implementation-defined
behavior. For instance, the MISRA-C rule 12.2 gives a fair
warning about the unspecified order of evaluation of sub-
expressions (e.g., x=b[i]+i++;). On the other hand, some
rules target behavior that is well defined but may be
dangerous in a safety context; for instance, the JSF AV rule
208 bans the usage of C++ exception handling.

Due to the different granularity and inconsistency of the
requirements, we consolidated them. Finally, a total of 61
requirements remained from these sources.

Exemplary requirement: Avoid wrong and invalid references, which is
described as: Wrong and invalid references are often introduced by
initialization, pointer arithmetic, or wrong destructor implementation
strategies. They have to be avoided to ensure that embedded systems run in
defined (safe) states. This requirement is linked to the MISRA-C rules 9.1,
11.1, 11.2, 17.6, 18.2, 18.3 and IEC 61508-3 B.1.5.

A. Embedded Quality Requirements

For reasons of clarity, we structured the 61 consolidated
requirements along nine categories. Table 1 presents these
categories and illustrates them with example requirements.

TABLE 1: CATEGORIES OF REQUIREMENTS

Notational requirements (NOT) address issues with respect to the style

of the textual presentation of the source code, including naming and

coding style conventions. Example requirement: NOT1 – Compliance

with naming conventions, especially ensure unique naming

Declaration and definition requirements (DEC) address issues with

respect to missing, unused, redundant, ambiguous, or error-tempting

declared/defined symbols. Example requirement: DEC3 – Careful use of

function-like macros

Procedural requirements (PROC) collect issues regarding (blocked)

statements that are typically embraced by subroutines, e.g., control flow

statements or expressions. Example requirement: PROC2 – Proper usage

of switch statements

Memory requirements (MEM) bundle issues with statements related to

memory references and pointers, e.g., memory allocation/de-allocation,

overflow, or pointer arithmetic. Example requirement: MEM1 – Avoid

wrong and invalid references

Protocol requirements (PROT) comprise requirements related to

concepts that are implemented across statements, subroutines, or

modules, e.g., error handling, concurrency, or permissions.

Example requirement: PROT1 – Avoidance of exception handling

Design- and architectural requirements (DES) target requirements

concerning the decomposition of a system into manageable and coherent

sub-systems. Issues include modularity, encapsulation, and strong

typing. Example requirement: DES4 – Usage of strong type systems

Correctness requirements (COR) cluster source code patterns that

likely break the functional correctness of a system, e.g.,

unused/unfinished code blocks or unorthodox language usage. Example

requirement: COR5 – Avoidance of unnecessary constructs

Timing requirements (TIM) collect implicit and explicit requirements

for the time behavior of a system. Example requirement: TIM1 –

Compliance with real-time requirements

Context-specific requirements (CON) contain topics that are

dependent on the platform or application domain used. Example: CON1

– Proper usage of standard libraries and system platform/frameworks

B. Quality Gate 1: Review and Evaluation

In the first step of the first quality gate, all requirements were
reviewed by several experts with respect to
comprehensibility, appropriate level of abstraction, and
consistent classification.

In the second step – after the integration of the review
feedback – the completeness and appropriateness of the
identified requirements, which become part of the model,
were evaluated in a small empirical study conducted with
five external experts.

We define completeness of the quality model with
respect to requirements as the degree to which the quality
model contains all mandatory ES quality requirements. We
operationalize completeness as the ratio of the actual number
of relevant requirements in the model and the total number of
relevant requirements. The latter is refined in the sum of the
actual number of relevant requirements in the model and the
number of relevant requirements that are still missing. The
number of missing requirements is then calculated based on
inspection results of the external experts using a capture-
recapture estimation model. Capture-recapture models are
widely used in the field of biology to estimate population

This is the author’s version of an IEEE-copyrighted article. The definitive version was published in Proceedings of the 23rd International

Symposium on Software Reliability Engineering (ISSRE 2012), Dallas, USA (available at http://ieeexplore.ieee.org).

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for

advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

size [4]. They were adopted in software engineering for
inspections to predict the number of issues remaining after
inspection in an artifact such as a requirements specification
or source code documents [26]. We use it here to estimate
the number of relevant but still not identified requirements.

Model appropriateness tells us whether and how the
model covers specific mandatory elements and is evaluated
subjectively by the external experts using a questionnaire.

Since 61 requirements are difficult to handle and check
for completeness as a whole, we defined different
perspectives (i.e., quality goals) in order to focus each
evaluation task on a subset of requirements whose
completeness is then evaluated with respect to the selected
perspective. During the study, we proceeded as follows:

(1) First, we identified and internally consolidated a set
of quality goals we consider as relevant for ES software
(including predictability, limited resource usage, safety,
certification, etc.), taking into account existing quality
models – especially models for ES software – and the
expertise available in the team. Then, based on internal
discussion rounds, we associated each quality goal with all
requirements whose fulfillment supports the specific goal
(e.g., MEM4 – Proper deallocation supports the goals
predictability and limited resource usage).

(2) Next, we conducted workshops where each external
expert independently first created a list of quality goals (s)he
considers as important for ES software and then compared
this list with our quality goals in order to subjectively
evaluate their appropriateness. In a final step, each expert
reviewed the identified requirements for three (previously)
randomly selected quality goals and noted requirements that
(s)he missed or considered dispensable.

(3) Finally, the lists of missing requirements were used to
estimate model completeness. In our capture-recapture based
estimates, we used the Jackknife estimator [4], which
assumes that missing elements may have different detection
probabilities. In the context of software inspections, it
provides the best estimation results compared to other
estimators when applied with four or more reviewers [26].

Evaluation results: When we asked about important
quality goals for ES software, efficiency, reliability, and
timeliness were mentioned by three out of five participants.
For all of them, the majority of the reviewers answered that
they believed that the ESQM covers these characteristics
appropriately. Robustness received two mentions as an
important quality goal for ES software; testability,
persistency, reactivity, and tool chain issues were each
mentioned just once and were considered by the respective
participant to be not appropriately covered by the model.

The sample of randomly selected quality goals contained
error handling, robustness, and code minimality. As a result,
we obtained a rate of completeness of 25% for the
requirements with respect to the three considered goals. The
reviewers’ subjective estimation resulted in a rate of
completeness of 29-62%.

Interpretation and improvement actions: The reasons for
the low rate of completeness were found in the answered
questionnaires. At the beginning, the requirements were
formulated too strictly and tightly, with too much emphasis

on source code. Following the experts’ recommendations, we
broadened the requirements to allow more coarse-grained
requirements for which fully automatic measurement might
be impossible.

V. MODELING REQUIREMENTS AND MEASURES

After eliciting and validating the requirements, the objective
of the second phase was to make the requirements
measureable and build an initial quality model.

Therefore, we associated the requirements with proper
measures from static code analysis tools for C and C++. The
majority of the measures are rules from the tool PC-lint,
which provides preconfigured rule sets for quantifying
MISRA rules. These rule sets served as a basis for the
identification of proper measures for the requirements. As a
result, at this time the quality model had to provide means
for measures and requirements.

A. Meta-Model

Based on the needed concepts identified above, the resulting
model structure was pretty simple. It consists of a
requirements hierarchy and measures. A measure may be
suitable for quantifying more than one requirement and vice
versa. The meta-model allows modeling hierarchies of
requirements, such as the structure illustrated in Figure 2.

B. Embedded Quality Model – First Version

The first version of the quality model consisted of 61
requirements. These requirements were structured along nine
categories. A total of 304 measures were modeled and
assigned to the requirements (multiple times). Figure 2
illustrates the structure on a small excerpt of the model.

One example is MEM1 – Avoid wrong and invalid
references which is quantified by 19 PC-lint rules.
Moreover, one out of four requirements is quantified with
more than 10 measures. The high number of measures for
this requirement is hard to handle cognitively. In Moody’s
work on decomposition principles for (data) models, the
author calls (among others) for cognitively manageable
pieces of decompositions [23]. According to Miller’s “seven
plus or minus two” rule, the human mind can only handle a
maximum of nine concepts at a time without exceeding the
limits on short-term memory [20].

On the other hand, almost a quarter of the requirements
we identified had no associated measures at this time. The
reason for this is that we defined some requirements that are
important for ES software but difficult or impossible to
quantify using static code analysis tools. In the third phase,
we addressed these problems.

Requirements

PC-lint 604

1. NOT … 4. MEM …

MEM1 MEM2 …

PC-lint 674 PC-lint 733 …
Measures

Hierarchy of
requirements

Figure 2: Requirements hierarchy with assigned measures (excerpt)

This is the author’s version of an IEEE-copyrighted article. The definitive version was published in Proceedings of the 23rd International

Symposium on Software Reliability Engineering (ISSRE 2012), Dallas, USA (available at http://ieeexplore.ieee.org).

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for

advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

C. Tool Support for Quality Specification

Quality modeling is a time-consuming activity, as it requires
thorough understanding of the abstract concept of quality
regarding a specific context or view as well as all facets and
difficulties related to its decomposition and measurement.
Therefore, proper tool support is essential; it enables the
modelers to develop quality models step by step and
collaboratively. Furthermore, the tool should allow turning
on/off any consistency constraints defined in the meta-model
(e.g., the number of measures associated with a requirement)
to give the modelers flexibility during the modeling progress.

Therefore, we used the Quamoco quality model editor as
presented in [8]. The editor is based on the Eclipse Modeling
Framework, which allows quick and easy reaction to any
changes of the meta-model.

D. Quality Gate 2: Review and Evaluation

In the first step of the second quality gate, the model itself
was reviewed with respect to consistency with the defined
modeling guidelines and the measures with respect to
comprehensibility.

In the second step – after the review feedback was
integrated – the completeness of the identified measures with
respect to requirements was evaluated in a small study
conducted with five external experts. Since it would be too
time consuming to evaluate the completeness of the
measures for all requirements, we randomly selected a
sample of five requirements, which were evaluated to get an
impression of the overall completeness.

In order to do this, we conducted workshops during
which each external expert independently identified for each
of the five randomly selected requirements all measures that
(s)he missed or considered dispensable using a questionnaire.

After analyzing the results of the questionnaires, we
estimated the completeness of the measures for each of the
selected requirements by again applying a capture-recapture
model with a Jackknife estimator (cf. Section 0). Note that
instead of evaluating whether the model contains all relevant
requirements needed to address relevant ES software quality
goals (see quality gate 1), this time we evaluated whether all
aspects of the requirements were sufficiently covered by
associated measures.

Evaluation results: The randomly selected requirements
fell into the categories PROT, DES, MEM, PROC, and DEC.
As a result, we obtained a rate of completeness of 64% for
the measures with respect to the given sample of
requirements. The reviewers’ subjective estimations of
completeness were between 77% and 100%.

The measures code comment ratios and avoiding pointer
arithmetic were considered to be unsuitable for the ESQM,
i.e., they were considered of no relevance for ES software.

Interpretation and improvement actions: Similarly to the
first phase, we analyzed the experts’ comments and
enhanced the respective requirements. Additionally, we
introduced further measures, mostly manual ones, in order to
cover requirements that had not been quantified yet or to
improve requirements that were not covered sufficiently.

VI. ADDING FACTORS AND ISO 25010

The objectives of the third phase were to make the model
more programming language independent by abstracting
from concrete measures and adding the quality
characteristics of ISO 25010 [12] to the model as a common
view on quality.

We deliberately disregarded the ISO 25010 for
requirements elicitation during the first phase since the
provided model is too abstract and does not focus on ES
software. However, at this time, we were already aware of
the specific quality requirements and associated measures for
ES software. We integrated this popular view on software
quality because higher-level management is typically less
interested in how well quality requirements are addressed,
but rather in whether the software might have problems
regarding certain quality characteristics as defined in
ISO 25010 (reliability, security, etc.).

We observed that requirements are a good means for
deriving relevant measures for operationalization, but they
are too coarse-grained to link all measures pooled by a
requirement to a specific set of quality characteristics
(remember also that one fourth of the requirements is
quantified by more than 10 measures). On the other hand, the
measures are typically too detailed and programming
language specific to allow direct assignment to the quality
characteristics. Furthermore, this would have made the
quality model very complex, since a lot of measures were
associated with each quality characteristic. Additionally, the
reusability and maintainability of the quality model itself
would have suffered because each newly added measure had
to be associated with one or more quality characteristics and
one or more requirements.

As a consequence, we needed an intermediate level of
abstraction in order to ensure programming language
independence and keep the model cognitively manageable.
Therefore, we introduced the basic concept of a product
factor, which describes a property of an entity. This concept
is similar to Dromey’s [9] quality carrying properties of
product components and also used by the Quamoco quality
model in a slightly modified form [31]. An entity expresses
the part of a product (source code) that should have a
particular property.

Exemplary product factor: Reference Validity @Assignment Statement,
where Assignment Statement is the entity and Reference Validity is the
property. This product factor means that the memory address (i.e., the
reference) assigned to a pointer variable by an assignment statement should
always match a safe location in the memory (i.e., be valid).

This seems very detailed and technical but provides a
clear understanding of what properties are demanded from a
specific source code entity and helps to structure and abstract
from even more detailed measures. In order to use these
product factors as a basis for specific views on quality, in our
case the ISO 25010 quality characteristics tree, the quality
model additionally needed means for defining justified
relations between product factors and quality aspects. We
use the more general term aspect to clarify that not only
quality characteristics of the ISO 25010 quality model can be

This is the author’s version of an IEEE-copyrighted article. The definitive version was published in Proceedings of the 23rd International

Symposium on Software Reliability Engineering (ISSRE 2012), Dallas, USA (available at http://ieeexplore.ieee.org).

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for

advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

modeled here, but also arbitrary views on quality. This is
done by means of a meta-model element called impact.

A. Enhancements of the Meta-Model

The enhancements to the quality model sketched above
required significant refinements to be made to the meta-
model.

The central element of the revised meta-model is the

(abstract) factor, which can be derived to allow more specific
factor types. Each specialized type relates to its own
hierarchical view on quality. The ESQM provides a
hierarchy of quality aspects (i.e., ISO characteristics),
requirements, and product factors. Factors can refine only
other factors of the same type, e.g., quality aspects can only
refine other quality aspects. The impact relation is directed
and states whether a factor positively or negatively
influences another one and provides a justification for this
kind of impact. Impact relations are only allowed between
factors of different types, e.g., product factors can only have
an impact on requirements or quality aspects. For this
purpose, the meta-model considers various constraints that
ensure such modeling restrictions.

Product factors play a special role in the meta-model. A
product factor can refer to an entity and belongs to a property
that the product factor describes. They are the only factors
that are associated with measures and are seen as the
foundation of each quality model – a detailed but
programming language independent abstraction layer. Like
any other factors, the product factors can be composed into
more abstract ones using the refine relation (modeled at the
factor). The product factors are intended to serve as the
source for all impacts on other factor hierarchies.

B. Enhancements of the Model

Figure 4 provides an overview of an excerpt of the ESQM.
The measures quantify the product factors, which again
refine other product factors or impact the requirements or
quality aspects.

After reworking the requirements of the first version of
the quality model, it now consisted of 60 requirements. We
added further measures, mostly manual ones (22), in order to
close the gap of requirements not yet quantified.

Basically, the ISO standard refines its top-level quality
characteristics into sub-characteristics. Unfortunately, the
sub-characteristics sometimes overlap or are interdependent,
as the standard itself notes, e.g. “Availability is therefore a
combination of maturity (which governs the frequency of
failure), fault tolerance and recoverability (which governs the

length of down time following each failure)” [12]. All of
these are sub-characteristics of reliability. In such cases, the
product factors impact top-level ISO characteristics instead
of its sub-characteristics. However, the refinements of
maintainability, functional suitability, and performance
efficiency are better suited for impacts of product factors and
therefore impacted at the level of sub-characteristics.

In total, the model provides factors of 32 different

properties, such as Behavioral Integrity, Encapsulation
Strength, Reference Validity, Unintentional Side-Effect, or
Uselessness. These properties can be combined with 87
entities, such as Class, Field, Subroutine Parameter,
Assignment Statement, or Switch Statement. On this basis, we
modeled 162 product factors on the leaf level of the product
factor hierarchy.

This additional level of abstraction led to fewer measures
pooled by a product factor. In contrast to the first version
(one out of four requirements), only one product factor now
had more than 10 measures assigned to it. On the other hand,
one half of the product factors at the leaf level were
quantified by exactly one measure. In our view this is not a
problem, since adding further measurement tools or
measures for other languages in the future will increase the
number of measures for these factors.

C. Quality Gate 3: Review and Evaluation

In the first step of the third quality gate, the model itself was
reviewed with respect to consistency with the defined
modeling guidelines and comprehensibility of the added
elements (i.e., in particular, the quality aspects, product
factors, and impact relationships).

In the second step – after the review feedback was
integrated – the completeness of the identified product
factors and the quantifying measures was evaluated in a final
study conducted with six external experts. Since we could
not evaluate the completeness of all 336 measures with
respect to the quality requirements, we randomly selected a
sample of five quality requirements and evaluated the
completeness of the measures that were indirectly associated
via product factors with these requirements. Additionally, we
evaluated the completeness of the introduced product factors
with respect to three randomly selected quality aspects.

PC-lint 604

Reference Validity
@Assignment Statement

MEM1- Avoid wrong
and invalid references

Reliability

impacts +

impacts +

PC-lint 674 PC-lint 733

Reference Validity
@Source Code

refines

Reference
Validity @ …

Functional
CorrectnessMEM…

…

…

4. Memory requirements

refines

Requirements Quality Aspects

Product
Factors

Measures

Reference Validity
@Pointer Access

F. Suitability

…

Figure 4: ESQM quality model with factors (excerpt)

*

Quality Aspect

Requirement

Product Factor
refines

*
Factor

*

*
*

Impact

Measure**

0..1

Entity

Property

*
1

Figure 3: Enhanced meta-model

This is the author’s version of an IEEE-copyrighted article. The definitive version was published in Proceedings of the 23rd International

Symposium on Software Reliability Engineering (ISSRE 2012), Dallas, USA (available at http://ieeexplore.ieee.org).

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for

advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Evaluation results: The randomly selected requirements
fell into the categories CON, DEC, DES, PROC, and PROT.
The selected requirements were different from those selected
in quality gate 2. As a result, we obtained a rate of
completeness of 54% for the measures with respect to the
requirements. The reviewers’ subjective estimations of
completeness were between 68-98%.

Additionally, we analyzed the completeness of the
product factors with respect to three ISO quality aspects:
reliability, reusability, and time behavior. We obtained a rate
of completeness of 47%. The reviewers’ subjective
estimations of completeness were between 51% and 94%.

Interpretation and improvement actions: To our surprise,
the completeness of the measures regarding the inspected
requirements was lower (54%) than the one of the previous
version of the model (64%). One possible explanation may
be the changed set of inspected requirements. Another
explanation may be that the additional abstraction layer
introduced with the product factors helped the experts to
identify missing measures more effectively. Furthermore, the
focus of ESQM in the current version is on static analysis,
but the experts often demanded other aspects of quality, such
as dynamic analysis and tests.

A comparison of the completeness of the requirements
regarding the quality goals (25%) in the previous version
with the completeness of the product factors regarding the
quality aspects (47%) yields a higher degree of completeness
on the intermediate layer of the model. Once again, we
analyzed the experts’ comments and enhanced the respective
product factors and introduced additional measures.

VII. ADDING ASSESSMENT SUPPORT

After the completion of the third phase, the quality model
provided a specification and low-level quantification of
quality for ES software. In the fourth phase, we addressed
the operationalization of the quality model regarding (semi-)
automatic quality assessments to get interpretable quality
statements on higher abstraction levels. Therefore, we
developed and integrated an assessment model that enables
collecting required measurement data, evaluating the
collected data, and aggregates these results according to the
developed quality model. Additionally, we adapted the open-
source quality analysis toolkit ConQAT [8] to cope with the
requirements that emerged from our assessment model.

A. Enhancement of the Meta-Model

In order to support the planned kind of quality assessments,
the meta-model had to be extended by two additional
elements, instrument and evaluation.

Instruments are associated with measures and decide how
the measures defined in the quality model are actually
collected. Some measures may be collected based on a
described manual procedure because they cannot be
collected automatically or tooling is not available; others are
collected using the output of a specific source code analyzer.

Evaluations are complex model elements that are
associated with a factor for which they provide an evaluation
result. In order to do this, they can use (a) the results of
associated measures if the factor is a product factor or (b) the

evaluation results of subordinate factors (i.e., factors refining
or impacting the evaluated factor). In case (a), they are called
measure evaluations and are responsible for normalizing the
measurement results, mapping them onto a common
evaluation scale and aggregating the obtained evaluation
results to provide an evaluation result for the evaluated
factor. In case (b), they are called factor aggregations and
are responsible for aggregating the evaluation results of all
factors refining or impacting the evaluated factor.

B. Assessment Method

In order to support theoretically sound and comprehensive
assessment of software quality using hierarchical quality
models, Trendowicz et al. [27] developed a quality
assessment method called SQUAD. The method was
developed to addresses the 15 most relevant requirements on
software quality assessments as identified by a survey and
literature review. Based on a review of existing quality
assessment methods, the SQUAD method proposes a
combination of established concepts from the field of Multi
Criteria Decision Analysis [14]. It defines the semantics of
the evaluation elements in a quality model and provides
guidelines for the concrete operationalization of a model for
quality assessments. Based on the positive experience we
gained when the method was applied to operationalize the
general Quamoco quality model [31], we used the method
for our quality model, too.

C. Operationalization of the Model

In the following, we briefly describe the key components
of the quality assessment based on SQUAD and how we
operationalized our quality model for quality assessments.

Normalizing Measurement Results: When assessing the
quality of a software product, the first step is the collection
of the required measurement data as specified by the
measures in the quality model. Such a measure might be the
number (and location) of undocumented functions in the
source code. However, this information in isolation can
usually not be evaluated reasonably. For instance, 20
undocumented functions might be okay if the software has
several thousand functions, but might not be acceptable for a
software product with only 50 functions or less. Moreover,
the size of the affected functions also plays a role; if the
undocumented functions are small helper functions with five
or fewer lines of code, the evaluation would be expected to
be better than if each of the affected functions consists of
100 or more lines of code.

This means that in order to make the measured values
comparable among different software products, the
measurement results have to be normalized. For measures
providing a list of findings (i.e., problematic places in the
source code), we calculate, for instance, the relative code
proportion affected. For the measure ‘undocumented
functions’, we would calculate the ratio between the amount
of source code of the undocumented functions and that of all
functions in the product. Typically, one person decides how
a given measure is normalized. We made this more rigorous
by using guidelines and a four-eye principle to consistently
apply normalization guidelines for all 336 measures.

This is the author’s version of an IEEE-copyrighted article. The definitive version was published in Proceedings of the 23rd International

Symposium on Software Reliability Engineering (ISSRE 2012), Dallas, USA (available at http://ieeexplore.ieee.org).

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for

advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Evaluating Normalized Results: The resulting normalized
value for a measure is comparable among different software
products but can usually not be compared with the values of
other measures, e.g., how to compare the result that 40% of
the functions are insufficiently documented with 1% of the
code containing functions with unused parameters? Thus,
each measure has to be evaluated independently and thereby
translated into a value on a common evaluation scale in order
to allow us to aggregate the results of different measures.

The normalized measurement result of a measure is
evaluated by applying an evaluation function, which maps
the normalized measurement results onto the common
evaluation scale [0,1]. In order to keep the assessment easy
to understand and interpret, we limited the applied evaluation
functions to linear increasing and linear decreasing
functions with a min and max threshold. The higher the
normalized measurement result, the lower the evaluation
result would be if the linear decreasing function is used.

Besides the decision about whether to use a decreasing or
increasing evaluation function, which was made by two
model developers together based on the relationship between
the measure and the evaluated factor (e.g., a high value for
‘undocumented functions’ decreases the evaluation results of
the factor ‘Moderate Occurrence @Subroutine Comment’),
the min and max values have to be defined for each function.
Since determining these thresholds for all measures based on
expert judgment would be time consuming and unreliable,
we decided to use a benchmarking-based approach: For each
measure, we collected normalized measurement data from 17
open source products (8 written in C & 9 written in C++),
identified potential outliers in the data using box plots as a
robust approach, and taken the minimum and maximum of
the non-outlier values as the min and max thresholds for the
respective evaluation function (Figure 5).

This approach also implicitly addresses the problem of
falsely reported findings of static code analyzers (i.e., false
positives). They are automatically reflected in the min/max
thresholds since rules detecting many false positives receive
higher min/max values than reliable rules with fewer ones.

In the cases where an insufficient number of non-zero

values were available for reliably determining a min and max
value (i.e., the evaluated measure detected issues in fewer
than four products), we set min = 0 and max = 10-7, which
approximates a jump function.

Evaluating Factors: In order to evaluate a factor, we
have to consider the evaluation results of its subordinated
factors or measures as well as their relative importance. In
SQUAD, a weighted sum approach is used to aggregate the

evaluation results of the subordinates and calculate the
evaluation result for the evaluated factor.

This means that– except for the trivial case of factors
quantified by one measure – we had to determine weights for
the subordinated measures or factors based on their relative
importance. We did this by providing for each product factor
and quality aspect a ranking of its subordinated measures or
factors. The ranking was done by two model developers with
experience in the ES domain and in the measures used in the
model. They classified all subordinate factors or measures
into three priority classes at maximum. The subordinate
factors or measures pooled in the priority classes were
ranked with the respective priority. Then we used the Rank-
Order Centroid method [3] to transform the ranking results

into a set of weights wi=1…n[0,1] that sums up to 1. In
consequence, the calculated sum and thus the evaluation
result is again a value on the evaluation scale [0,1].

Interpreting Evaluation Results: Because a value on the
[0,1] evaluation scale is difficult to interpret for an human
assessor, one can apply an interpretation function, which
maps the result on the evaluation scale to a more intuitive
interpretation scale. In our case, we used German school
grades, where 1 is very good and 6 unsatisfactory. According
to Figure 6, if the evaluation result is lower than 0.29, the
product gets the worst grade. The best grade is given if the
evaluation result exceeds 0.91. In order to allow assessors to
observe minor quality changes, we interpolate the grades for
higher precision, i.e., we provide grades with one decimal
place (such as 3.8 or 5.2).

D. Quality Gate 4: Review and Validation

The focus of this validation was to check whether the
automatic assessment results provided by the ESQM are in
concordance with results obtained by another independent
and valid approach for assessing product quality.

For this purpose we compared the results of the
automatic assessment for three industrial products with the
independent judgment of one professional who knows these
three products well from a quality perspective. His
judgments are based on detailed code reviews he performed
for each of the products that took several days.

Validation results: The professional rated the product
quality with school grades using a given set of quality
criteria similar, but not totally conformant to the quality
characteristics of ISO 25010. Therefore, not all assessment
results on the quality aspect level can be compared directly;
however, they are provided for the sake of completeness
(gray areas in Table 2). The overall quality judgment of the
professional was calculated from the median of his judgment
for the quality attributes maintainability, predictability,
resource utilization, safety, and security. It shows a clear
order of the quality of the products, with product A being the
best, product C being second, and product B being the worst.

0 0.29 0.49 0.66 0.80 0.91 1

6 (worst) 5 4 3 2 1 (best)
German school grades

Evaluation scale

Figure 6: Mapping of evaluation values to school grades

max

1.0

0.0

E
va

lu
at

io
n

R

es
u

lt

Normalized
Measurement Result

min

Non-Outlier RangeOutlier Outlier

Q1 Q3IQR Q3+1.5*IQRQ1-1.5*IQR

Linear Decreasing
Evaluation Function

Figure 5: Calibration of evaluation functions

(Qx: Quartile x, IRQ: Inter-Quartile Range)

This is the author’s version of an IEEE-copyrighted article. The definitive version was published in Proceedings of the 23rd International

Symposium on Software Reliability Engineering (ISSRE 2012), Dallas, USA (available at http://ieeexplore.ieee.org).

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for

advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

TABLE 2: COMPARISON OF EXPERT JUDEMENT AND THE ESQM

ASSESSMENT RESULTS (GERMAN SCHOOL GRADES)

 Expert Judgment

Product Quality
Maintain

ability

Predict

ability
Security Safety

Resorc

es Util.

A 1 1 2 1 1 3

B 5 5 5 5 5 4

C 3 3 3 3 3 1

 ESQM Assessment Results Using SQUAD

Product Quality
Maintain

ability

Reli

ability
Security

Functio

nality

Perfor

mance

A 1.2 1.1 1.6 1 1.1 1

B 3.1 2.9 3.5 2.4 3.4 2.3

C 1.8 1.4 2.3 1.4 1.4 1.4

Interpretation: The ESQM-based assessment results for

the three products are similar to the expert’s judgment, i.e.,
the order of products is the same. However, the ESQM-based
assessment calculates better grades, although it keeps the
same order as the expert. One reason for this might be that
the ESQM quality model focuses on quality requirements
that are directly related to the particularities of ES and the
model does not consider more general quality factors that are
independent of a specific application domain (e.g., adherence
to naming conventions). We assume that the expert
considered these more general quality aspects in his rating.

The sub-characteristics used by the professional are
slightly different from the ISO 25010 quality aspects used in
the automatic assessment. Nevertheless, some detail results
can be compared. For maintainability (which is directly
comparable), ESQM arrives at the same quality order of the
products as the expert. Reliability of the ESQM model can
be related to the expert opinion on predictability and the
ESQM assessment arrives at the same quality order of the
products as the expert. The quality aspect security is directly
comparable and again ESQM yields the same order for the
quality of the products as the expert.

VIII. THREATS TO VALIDITY

Our main validation results for the ESQM are based on two
different types of evaluations: the completeness evaluations
conducted in QG1 to QG3 for different model elements and
the criteria validity evaluation conducted in QG4. Next, we
discuss the threats to validity that we consider to be most
relevant for each of the two types of evaluations.

Completeness evaluations: A major threat to validity is
the fact that due to the low number of external experts (5-6)
in each inspection round, statistical tests with a reasonable
power level could not be performed to support the validity of
our completeness estimates (conclusion validity). Moreover,
the participants were a convenience sample because they
were external to the project and could not be forced to
participate (external validity). Finally, the samples of the
inspected model elements (although randomly selected)
might not be representative of the complete model due to the
low number of elements (internal validity). Although these
facts have an impact on the validity of our results, they could
not be avoided due to the given design constraints: finding a
higher number of appropriate (experienced) external experts
who would agree to spending more than half a day on

inspecting a sample of quality model elements could not be
realized in our context.

Criterion validity evaluation: There are four major
threats to our criterion validity study. First, due to the low
number of assessed products, we could not statistically test
the agreement between the given expert judgment and the
ESQM results (conclusion validity). Second, only one expert
rated the three products; therefore, we cannot be sure that the
criterion to which we compare our ESQM results is a valid
representation of our construct ‘code-based ES quality’.
Unfortunately, it is very difficult to obtain quality statements
for the same industrial embedded products from multiple
professionals. The professional who did the rating needed
several days for each product, and software failure or bug
numbers usually do not represent a valid measure for code-
based software quality. Third, since the expert's judgment on
the three products was done completely independent from
the model development, the quality aspects considered do
not match perfectly between the expert-based and the
ESQM-based assessments (construct validity). Fourth and
finally, all assessed products were from only one company;
hence, it is not clear to which extent our results can be
generalized to ES products in general (external validity).

IX. SUMMARY AND FUTURE WORK

Source code quality of ES software is of vital importance as
software-equipped ES have become more and more
established in daily life in recent decades. Unfortunately, in
practice there is a lack of operationalized quality models that
cover the specifics of ES code quality. Therefore, our work
provides three major contributions. We (1) systematically
developed and validated a quality model that covers the
specifics of ES code quality and provides operationalization
for products written in C and C++, (2) we present a tested
approach for developing a quality model for a specific
domain (i.e., ES software), and (3) provide support for
largely automated quality assessments.

The developed quality model (ESQM) covers a set of
identified quality requirements that are specific for ES
software. Additionally, it provides programming language
independent factors for bundling similar measures of various
tools and abstract from specific languages. In our evaluations
we focused primarily on (a) completeness of the specified
quality model, which was approximated considering the
results of the inspection-based capture-recapture estimates:
completeness of measures with respect to the requirements
(54%) and completeness of the product factors with respect
to the ISO quality characteristics (47%). The numbers may
seem moderate with 100% in mind, but we do not know of
any other quality model development where the model
completeness was quantified and as rigorously checked by
external experts as in our case. Therefore, our completeness
numbers should rather be considered as a baseline against
which future modeling efforts can be compared. In order to
determine the usefulness of the quality model in practice, we
performed an initial evaluation of (b) the validity for the
ESQM-based assessment results. Although being more
repeatable and requiring considerably less effort than manual
code inspections, we observed concordance between the

This is the author’s version of an IEEE-copyrighted article. The definitive version was published in Proceedings of the 23rd International

Symposium on Software Reliability Engineering (ISSRE 2012), Dallas, USA (available at http://ieeexplore.ieee.org).

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for

advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

ESQM-based ranking and independent expert judgment on
the quality of three assessed industrial products. This means
that the products identified by the expert as being the best,
middle, and worst one based on manual code inspections are
the same as those calculated by the automatic approach.

Due to the low number of trial products, we cannot test
these results for statistical significance, but they provide a
first promising clue for good criterion validity of the ESQM-
based assessments. Based on these results, the model is
currently being applied in a company to get a quick picture
of the quality of ES software and motivate and focus code-
related improvement actions.

In the future, we plan to improve the existing model
through better automation of some manual measures with
additional tools. Furthermore, it seems promising to involve
dynamic analysis techniques and tools to determine test
coverage or performance issues.

ACKNOWLEDGMENT

This work was funded in part by the German Federal
Ministry of Education and Research (BMBF) in the context
of the grant “Quamoco, 01IS08023B/C”.

REFERENCES

[1] M. Åkerholm, J. Fredriksson, K. Sandström, and I. Crnkovic,
“Quality Attribute Support in a Component Technology for Vehicular
Software,” in Fourth Conference on Software Engineering Research
and Practice in Sweden Linköping Sweden, pp. 1-9, 2004.

[2] A. Alvaro, E. Almeida, and S. Meira, “Quality attributes for a
component quality model,” in 10th WCOP/19th ECCOP, 2005.

[3] F. H. Barron and B. E. Barrett, “Decision quality using ranked
attribute weights,” Management Science, vol. 42, no. 11, pp. 1515-
1523, 1996.

[4] K. P. Burnham and W. S. Overton, “Estimation of the Size of a
Closed Population when Capture Probabilities vary Among Animals,”
Biometrika, vol. 65, no. 3, pp. 625–633, Dec. 1978.

[5] F. Carvalho and S. Meira, “Towards an Embedded Software
Component Quality Verification Framework,” 2009 14th Int. Conf.
on Engineering of Complex Computer Systems, pp. 248-257, 2009.

[6] CENELEC, “EN 50128: Railway applications - Communications,
signaling and processing systems - Software for System Safety.”
2001.

[7] D. Coleman, D. Ash, and B. Lowther, “Using metrics to evaluate
software system maintainability,” COMPUTER,, vol. 27, no. 8, pp.
44-49, 1994.

[8] F. Deissenboeck, L. Heinemann, M. Herrmannsdoerfer, K.
Lochmann, and S. Wagner, “The quamoco tool chain for quality
modeling and assessment,” in 33rd International Conference on
Software Engineering (ICSE), pp. 1007–1009, 2011.

[9] R. G. Dromey, “A model for software product quality,” IEEE Trans.
on Software Engineering, vol. 21, no. 2, pp. 146-162, 1995.

[10] C. Ebert and C. Jones, “Embedded Software: Facts, Figures, and
Future,” Computer, vol. 42, no. 4, pp. 42-52, 2009.

[11] International Electrotechnical Commission, “IEC 61508: Functional
safety of electrical/electronical/programmable electronic safety-
related systems,” 2010.

[12] International Organization for Standardization, “Software
Engineering – Software product Quality Requirements and
Evaluation (SQuaRE),” 2005.

[13] JSF, “Joint Strike Fighter Air Vehicle C++ Coding Standards for the
System Development and Demonstration Program,” Lockheed Martin
Corporation, 2005.

[14] R. L. Keeney and H. Raiffa, Decisions with Multiple Objectives:
Preferences and Value Tradeoffs. Cambridge University Press, 1993,
p. 592.

[15] B. Kitchenham and S. L. Pfleeger, “Software Quality: The Elusive
Target,” IEEE Software, vol. 13, no. 1, pp. 12-21, 1996.

[16] M. Kläs, J. Heidrich, J. Münch, and A. Trendowicz, “CQML Scheme:
A Classification Scheme for Comprehensive Quality Model
Landscapes,” 35th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA), pp. 243-250, 2009.

[17] M. Kläs, C. Lampasona, S. Nunnenmacher, S. Wagner, M.
Herrmannsdörfer, and K. Lochmann, “How to Evaluate Meta-Models
for Software Quality?” Joined International Conferences on Software
Measurement. IWSM/MetriKon/Mensura, Shaker, pp. 443-462, 2010.

[18] M. Kläs, H. Nakao, F. Elberzhager, and J. Münch, “Support planning
and controlling of early quality assurance by combining expert
judgment and defect data—a case study,” Empirical Software
Engineering, vol. 15, no. 4, pp. 423-454, 2010.

[19] Lyu, M. R., “Software Reliability Theory” in Encyclopedia of
Software Engineering. John Wiley & Sons, 2002.

[20] G. A. Miller, “The magical number seven, plus or minus two: some
limits on our capacity for processing information.,” Psychological
review, vol. 63, no. 2, pp. 81-97, 1956.

[21] MISRA, “MISRA-C 2004 Guidelines for the use of the C language in
critical systems,” Motor Industry Research Association, 2004.

[22] MISRA, MISRA C++ 2008 Guidelines for the use of the C++
language in critical systems, Motor Industry Research Association,
2008.

[23] D. Moody, “A decomposition method for entity relationship models:
a systems theoretic approach,” International Conference on Systems
Thinking in Management, pp. 462-469, 2000.

[24] R. Neumann, L. Grunske, and B. Kaiser, “Hierarchical Software
Quality Models - A step towards quantifying non-functional
properties,” in Proceedings of the 12th International Workshop on
Software Measurement, pp. 107-124, 2002.

[25] C. Perrow, Normal Accidents: Living with High Risk Technologies,
2nd ed., Princeton University Press, 1999.

[26] H. Petersson, T. Thelin, P. Runeson, and C. Wohlin, “Capture-
recapture in Software Inspections after 10 Years Research – Theory,
Evaluation and Application,” Journal of Software and Systems, vol.
72, no. 2, pp. 249-264, 2004.

[27] A. Trendowicz, M. Kläs, C. Lampasona, J. Münch, C. Körner, and M.
Saft, “Model-based Product Quality Evaluation with Multi-Criteria
Decision Analysis,” Proceedings of the Joined Int. Conf. on Software
Measurement (IWSM/MetriKon/Mensura), pp. 3-20, 2010.

[28] S. Wagner, “A Bayesian network approach to assess and predict
software quality using activity-based quality models,” in Information
and Software Technology, vol. 52, no. 11, pp. 1230-1241, 2010.

[29] S. Wagner, K. Lochmann, S. Winter, A. Goeb, and M. Klaes,
“Quality Models in Practice. A Preliminary Analysis,” 3rd
International Symposium on Empirical Software Engineering and
Measurement (ESEM), IEEE Computer Society, 2009.

[30] S. Wagner, K. Lochmann, S. Winter, A. Goeb, M. Kläs, and S.
Nunnenmacher, “Software quality in practice - survey results,” 2010
[Online]. Available: https://quamoco.in.tum.de/wordpress/wp-content
/uploads/2010/01/Software Quality Models in Practice.pdf

[31] S. Wagner, K. Lochmann, L. Heinemann, M. Kläs, A. Trendowicz, R.
Ploesch, A. Seidl, A. Goeb, J. Streit, “The Quamoco Product Quality
Modelling and Assessment Approach,” in Proceedings of the 34th
Int. Conf. on Software Engineering (ICSE), pp. 1133-1142, 2012.

[32] “What languages do you use to develop software? - On Target:
Embedded Systems,” 2010. [Online]. Available: http://blog.vdc
research.com/embedded_sw/2010/09/what-languages-do-you-use-to-
develop-software.html. [Accessed: 01-Feb-2012].

[33] J. G. Wijnstra, “Quality attributes and aspects of a medical product
family,” Proceedings of the 34th Annual Hawaii International
Conference on System Sciences, vol. 0, no. c, p. 10, 2001.

