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Abstract. In contrast to established safety-critical software components, we can 

neither prove nor assume that the outcomes of components containing models 

based on artificial intelligence (AI) or machine learning (ML) will be correct in 

any situation. Thus, uncertainty is an inherent part of decision-making when 

using the outcomes of data-driven models created by AI/ML algorithms. In order 

to deal with this – especially in the context of safety-related systems – we need 

to make uncertainty transparent via dependable statistical statements. This paper 

introduces both a conceptual model and the related mathematical foundation of 

an uncertainty wrapper solution for data-driven models. The wrapper enriches 

existing data-driven models such as provided by ML or other AI techniques with 

case-individual and sound uncertainty estimates. The task of traffic sign 

recognition is used to illustrate the approach, which considers uncertainty not 

only in terms of model fit but also in terms of data quality and scope compliance. 

Keywords: Artificial Intelligence, Machine Learning, Dependability, Safety 

Engineering, Data Quality, Operational Design Domain, Model Validation. 

1 Motivation 

More and more software-intensive systems contain components that make use of data-

driven models (DDMs) [1], [2], such as those provided by the application of AI and 

ML. In particular, autonomous systems need to process various kinds of sensor input

to recognize and interpret their context and collaborate with other agents. Unlike tradi-

tionally engineered components, which are developed by software engineers who de-

fine their functional behavior by writing code or models, the behavior of data-driven

components (DDCs) is determined by algorithms based on a sample of training data.

The functional behavior expected from DDCs can therefore only be specified and 

tested on a selection of example cases, and we cannot assure that DDCs will behave as 

intended in all cases. As a consequence, the outcome of DDCs is afflicted with uncer-

tainty, which has to be appropriately understood and managed during design time and 

runtime to provide a dependable system.  
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Previous work [3] proposes separating the sources of uncertainty in DDCs into three 

major classes, distinguishing between uncertainty caused by limitations in terms of 

model fit, data quality, and scope compliance. Whereas model fit focuses on the inher-

ent uncertainty in a DDM, data quality covers the additional uncertainty caused by its 

application to input data obtained in suboptimal conditions. Scope compliance finally 

covers the phenomenon that a model might be applied in situations outside the scope 

for which it was intended (i.e., for which it was trained and tested). 

Building upon this classification, we derive and illustrate a mathematical model for 

capturing information about the different sources of uncertainty and combining it into 

situation-aware and statistically sound uncertainty statements (Section 3). First, Section 

2 motivates this work, positioning it in the context of existing work. The paper con-

cludes with possible applications and provides an outlook on future work (Section 4). 

2 Related Work 

Uncertainty estimates are usually expressed by probabilities for categorical out-

comes and by probability distributions or prediction intervals in combination with a 

confidence level for numerical outcomes [4]. In the literature, different approaches can 

be identified for obtaining such estimates [5].  

In the domain of computation and simulation models, uncertain model inputs are 

commonly addressed by forward uncertainty propagation [6]. Founded on the propaga-

tion of error theory, related techniques consider probability distributions instead of con-

crete values as model inputs to express inherent uncertainty and propagate them through 

the model. In the context of DDMs, however, it appears difficult to express uncertainty 

in unstructured data such as images using a probability distribution. Moreover, compu-

tation time requirements complicate reasonable applications at runtime. 

In the context of AI/ML, some common techniques used to train models implicitly 

include a kind of uncertainty information (e.g., decision trees [7] also provide proba-

bility values for each class, besides their categorical outcomes). For other techniques, 

revisions have been proposed to provide uncertainty estimates (e.g., for some (deep) 

neural networks [8], [9] [10], hybrid models [11], and analogy-based techniques [12]). 

Moreover, some meta-techniques are available that can be applied on top of existing 

modeling techniques [13] [14] to obtain uncertainty estimates.  

A limitation observed for many existing techniques that include means for providing 

uncertainty estimates is that these estimates are computed on training data. In conse-

quence, they may suffer from overfitting, leading to overconfidence when applied to 

yet unseen data during application. A further drawback of integrating the calculation of 

uncertainty estimates directly into a DDM is that the provision of realistic uncertainty 

estimates and the provision of accurate outcomes do not necessarily require the same 

inputs and features. For example, the meta-information that an image has low quality 

does not help to recognize an object in this image, but may indicate that there is a higher 

degree of uncertainty in the outcome of the applied object recognition model. Finally, 

existing approaches largely ignore the fact that a DDM might also be applied outside 

the target application scope for which it was trained and tested. 
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3 Uncertainty Wrapper Approach 

In this chapter, we derive and illustrate a mathematical model that allows encapsulating 

an existing DDM in a DDC via an uncertainty wrapper, which extends the outcome of 

the DDC (𝑜𝑚) by a situation-aware uncertainty estimate (𝑢̂𝛼) considering a requested 

degree of confidence (α). Such a DDC can be, e.g., a traffic sign recognition component 

that decides in a given situation (𝑐𝑎𝑠𝑒) based on the provided input (𝑖𝑛), e.g. an image, 

whether the detected sign is or is not a ‘Stop Sign’ (Fig. 1). To provide situation-aware 

uncertainty estimates, the wrapper addresses model fit, data quality, and scope compli-

ance related uncertainty [3] using the outcome of the DDC, a quality impact model, and 

a scope compliance model to process the respective parts of the uncertainty estimate. 
 

 

Fig. 1. Overview of important concepts and the data flow when providing uncertainty estimates 

In the following, we will limit our considerations to binary outcomes (i.e., 𝑜𝑚𝜖{0,1}) 
for the sake of simplicity. However, an extension to DDCs with an arbitrary number of 

categories as possible outcomes is straightforward (cf. one hot encoding). 

In the following, we will first introduce the fundamental mathematics needed to 

probabilistically describe uncertainty for our setting; next, we will separate uncertainty 

into a quality-related (𝑝𝑄) and a scope-compliance-related (𝑝𝑆𝐶) part. Then we will pro-

pose estimators for both parts and finally combine them into an overall statement on 

case-specific uncertainty (𝑢̂𝛼). 

Uncertainty. We define a 𝒄𝒂𝒔𝒆 as a specific situation in which the DDC should 

provide an outcome; for example, passing with a specific car at a certain point in time 

at a specific location, which leads to an input 𝒊𝒏 to the DDC. This input can include, 

for example, the image with the detected traffic sign, which needs to be identified, but 

also other sensor signals provided, e.g., by the GPS, rain sensor, and speedometer. 𝑖𝑛, 

which can be assumed as a tensor of a predefined structure, is the result of applying a 

measurement function 𝑖𝑛𝑝𝑢𝑡 to the case, i.e., 𝑖𝑛 =  𝑖𝑛𝑝𝑢𝑡(𝑐𝑎𝑠𝑒). 
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To provide an outcome, parts of 𝑖𝑛 are preprocessed and provided to the DDM with 

the model function   generating the outcome, i.e., 𝑜𝑚 =   ( )  with  =   (𝑖𝑛). In 

our example,   could be a tensor representing the normalized RGB channels of all pix-

els of the camera image. Let us now assume that we have some realizations 

(  , 𝑜 ), ( 2, 𝑜2),   of random variables (𝑋, 𝑂) where 𝑜𝑖  is the true label, i.e., the real 

outcome of a case. 𝑜𝑖  is known for training and test cases but not for cases in the appli-

cation phase, and 𝑜𝑖
𝑚 is the outcome by applying   on  𝑖. Accordingly, the random 

variable 𝑂 models the true label associated with 𝑋 and 𝑂𝑚 =  (𝑋) the predicted ones.  

Let us further assume that the realizations ( 𝑖 , 𝑜𝑖) are captured under common con-

ditions  = {𝑠 ,  𝑠𝑁}, under which the DDM is intended to be applied later on. This 

defines the target application scope     of the model. The    , which is also called 

operational design domain in the context of autonomous driving, could be traveling on 

German public roads with a roadworthy passenger car and a max. speed of 200 km/h. 

For reasons of completeness, we further define 𝑈   as a superset of     containing all 

possible cases, i.e., under intended as well as unintended conditions. 𝑈   is highly 

abstract since it contains, put simply, “the whole universe”.  

Now we can define uncertainty as the probability that DDM outcomes are wrong: 
 

𝑢 ((𝑋, 𝑂)) =  𝑝( (𝑋) ≠ 𝑂)  =  1   𝑝( (𝑋) = 𝑂)          (1) 
 

Separating quality (  ) and scope compliance (   ). When dealing with uncer-

tainty during the application, we cannot simply assume that the case for which we make 

an estimate is part of the target application scope    . Thus, we apply the law of total 

probability to separate 𝑐𝑎𝑠𝑒𝑠  𝑈   into cases that are in     and cases that are not1:  
 

 𝑝( (𝑋) = 𝑂) =  𝑝(𝑐𝑎𝑠𝑒    ) 𝑝( (𝑋) = 𝑂 |𝑐𝑎𝑠𝑒    )  
+ 𝑝(𝑐𝑎𝑠𝑒    ) 𝑝( (𝑋) = 𝑂 |𝑐𝑎𝑠𝑒    )      ≥ 𝑝𝑆𝐶  𝑝𝑄        (2) 

 
 

As we want to derive a case-specific estimate of uncertainty in our approach and as 

    might be highly imbalanced (e.g., more ‘0’s than ‘1’s in the case of ‘stop signs’), 

uncertainty estimates should distinguish between cases where 𝑜𝑚 = 0 and where 𝑜𝑚 =
1. We also indicate this in Fig. 1 with an arrow from the outcome to the quality impact 

model. Hence, the considerations below are limited to those cases for which the model 

predicts a stop sign (𝑜𝑚 = 1); the consideration for 𝑜𝑚 = 0 is analogous. Thus 𝑋 now 

denotes more specifically the conditional random variable 𝑋 |  (𝑋) = 1. 

Scope compliance (   ). We assume that for each case some scope-related infor-

mation is available. Without loss of generality, we assume that the first 𝑟 characteristics 

of   are measurable and can be checked on 𝑖𝑛 via the function 𝑠 , i.e., 𝑠 = 𝑠 (𝑖𝑛) =
 (𝟏𝑠1 , 𝟏𝑠2 ,  , 𝟏𝑠𝑟)(𝑖𝑛)  and that 1𝑠𝑙  is the indicator function for some characteristic 𝑠 , 

𝑠   , 1 ≤ 𝑙 ≤ 𝑟; e.g., 𝑠 = {𝑝𝑜𝑠𝐺𝑃𝑆   𝐺𝑒𝑟 𝑎𝑛𝑦} and 𝑠2 = {𝑣𝑠𝑝𝑒𝑒𝑑 𝑚𝑒𝑡𝑒 ≤

  00  /ℎ}. Next, we define the estimator 𝑝 𝑆𝐶
𝑠 = ∏ 𝑠 

    
. Because some characteristics 

of     are not checked, 𝑝 𝑠𝑐
𝑠  systematically overestimates  𝑝𝑆𝐶  and may be extended by 

a correction term   (which, however, needs to be defined based on expert opinion).    

                                                           
1  Since we cannot obtain representative samples for all 𝑐𝑎𝑠𝑒    , we make a worst-case ap-

proximation by assuming 𝑝( (𝑋) = 𝑂 | 𝑐𝑎𝑠𝑒   )  =  0, i.e., outcomes are never correct. 

=: 𝑝𝑆𝐶  =: 𝑝𝑄  
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Quality impact (  ). Besides an estimated general true-positive rate for    , qual-

ity-related knowledge for the specific input 𝑖𝑛 can be taken into account for the assess-

ment of uncertainty of a single case. Information about quality-related factors (e.g., rain 

intensity and car velocity) is computed by   , i.e.,  =   (𝑖𝑛). Next,   is used by a 

function  𝑠 to return the index   of a cluster  𝒌 of all cases 𝑐𝑎𝑠𝑒     with compa-

rable quality challenges and 𝑜𝑚 = 1. Thus, we refine 𝑝𝑄by 
 

𝑝
𝑄  
    ∶=  𝑝( (𝑋) = 𝑂 | 𝑐𝑎𝑠𝑒     ,  𝑠(  (𝑖𝑛𝑝𝑢𝑡(𝑐𝑎𝑠𝑒))) =  )    (3) 

 

Assuming    is a test dataset that is appropriately (randomly) sampled from    , i.e., 

each case in     has the same probability of being part of   , we can construct an 

estimator for 𝑝𝑄𝑐  based on the test data belonging to cluster 𝑐   For estimating 𝑝
𝑄  
    , 

the reuse of DDM training data should be avoided due to the risk of overfitting. 
 

𝑝 
𝑄  
    =

 

|𝐶 |
∑ 𝟏{𝑐𝑎𝑠𝑒:   }(𝑐𝑎𝑠𝑒)𝑐𝑎𝑠𝑒  𝐶 

               (4) 

with   = {𝑐𝑎𝑠𝑒    ∶ 𝑜𝑚 = 1 ∧   𝑠(  (𝑖𝑛𝑝𝑢𝑡(𝑐𝑎𝑠𝑒))) =  } 
 

The statistical uncertainty of the estimator has not been considered yet and is denoted 

by the expected confidence   of the uncertainty wrapper. For this, we construct the 

Bernoulli-distributed random variable Y ≔ 𝟏{𝑚(𝑋) 𝑂|𝑋 𝑇𝐴𝑆} and compute the lower 

bound 𝑝 𝑄𝑐 
𝛼 of a single-sided confidence interval for the given confidence level (e.g. α =

0   ). An example formula for the lower bound can be derived by the Wilson interval: 
 

𝑝 
𝑄  
    ,𝛼

=
1

1+𝑧1 𝛼
 (𝑝̂

𝑄   
𝑜 =1

+
𝑧1  𝛼
 

 
 𝑧1 𝛼 √𝑝̂𝑄   

𝑜 =1 (1   𝑝̂
𝑄   
𝑜 =1) +

𝑧1 𝛼 
 

4
),     (5) 

 

where 𝑧𝑣 = 𝛷− (𝑣) with  𝛷−  being the quantile function of the standard normal dis-

tribution and 𝑣  (0,1)  A comparison of alternative confidence intervals for the Ber-

noulli parameter is provided by Brown et al. [15] and the R-package ‘binom’ [16]. 

Case-specific uncertainty (   ). Let 𝑐𝑎𝑠𝑒𝑎 be a case of actual application, i.e., not 

part of the training or the test dataset; hence, the “real” outcome 𝑜𝑎 is not available. 

With 𝑖𝑛𝑎 being the respective input to the DDC and 𝛼 the requested confidence, we get 

a case-specific estimator for the uncertainty 
 

𝑢̂𝛼(𝑐𝑎𝑠𝑒𝑎)  ≤ 1  (𝑝 
  
𝑠𝑎   ) 𝑝 

𝑄
  𝑠( 𝑎)

 ( 𝑎),𝛼                 (6)  

with 𝑠𝑎 = 𝑠 (𝑖𝑛𝑎),  𝑎 =   (𝑖𝑛𝑎),  𝑎 =   (𝑖𝑛𝑎), and   𝜖[0, 𝑝 𝑆𝐶
𝑠𝑎]    

 

Note that the effect of 𝛼 is limited to the quality-related part of uncertainty because the 

estimator for scope compliance cannot be statistically derived from a test dataset   . 

4 Conclusion and Outlook 

The proposed uncertainty wrapper approach considers not only uncertainty caused by 

model fit (general misclassifications) but also case-specific uncertainty introduced by 

the quality of the input data and uncertainty caused by the fact that the component might 
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be applied in situations that were not intended when it was built and tested. In summary, 

this can provide a more realistic picture of uncertainty in a specific situation. The un-

certainty estimate can therefore help to make better-informed decisions and initiate 

countermeasures if uncertainty exceeds accepted thresholds, e.g., slow down the car if 

the DDC is not sufficiently certain that there is no stop sign. 

 In the next step, we plan to instantiate the approach in a concrete case study.        
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