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Abstract. Software-intensive systems that rely on machine learning (ML) and 
artificial intelligence (AI) are increasingly becoming part of our daily life, e.g., 
in recommendation systems or semi-autonomous vehicles. However, the use of 
ML and AI is accompanied by uncertainties regarding their outcomes. Dealing 
with such uncertainties is particularly important when the actions of these sys-
tems can harm humans or the environment, such as in the case of a medical prod-
uct or self-driving car. To enable a system to make informed decisions when con-
fronted with the uncertainty of embedded AI/ML models and possible safety-
related consequences, these models do not only have to provide a defined func-
tionality but must also describe as precisely as possible the likelihood of their 
outcome being wrong or outside a given range of accuracy. Thus, this paper pro-
poses a classification of major uncertainty sources that is usable and useful in 
practice: scope compliance, data quality, and model fit. In particular, we highlight 
the implications of these classes in the development and testing of ML and AI 
models by establishing links to specific activities during development and testing 
and means for quantifying and dealing with these different sources of uncertainty. 
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1 Motivation 

Systems that make use of models provided by techniques belonging to the domains of 
machine learning (ML) and artificial intelligence (AI) are becoming increasingly im-
portant in our daily life. The terms AI and ML are frequently used interchangeable in 
this context although differences exist depending on specific definitions. This paper 
uses the term AI/ML models to refer to computation models trained on empirical data 
to mimic ‘intelligence’ by transforming inputs to outcomes based on mathematical re-
lationships that are hard to derive by deductive reasoning or simple statistical analysis.  

Nowadays, systems that make use of these models do not only recommend movies 
that we are most likely enjoy [1], but also support the detection of cancer based on 
images [2] or initiate emergency braking to avoid car crashes [3]. In turn, this means 
that these models are slowly also becoming a part of safety-relevant systems, where a 
high risk exists that humans or the environment may be harmed in the case of a failure. 
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When the relevant existing standards and guidelines for safety-relevant systems 
(e.g., [4], [5]) were written, however, the usage of AI/ML was not an issue yet and was 
thus not considered. As a consequence, many techniques proposed in these standards 
and guidelines appear difficult to apply for systems relying on AI/ML in safety-relevant 
functions. For example, formal verification techniques cannot be reasonably applied in 
these kinds of complex models trained on empirical data. Another open question is how 
to effectively perform mandatory safety reviews for models such as deep convolutional 
neural networks (CNNs), which have been considered as the state of the art in image 
recognition since 2012 [6]. 

Because of the complexity and empirical nature of these models, no guarantee can 
be provided for their correctness. Thus, a possible consequence could be refusal of the 
use of these models for safety-critical functions. Traffic sign recognition systems could 
still provide information to assist human drivers. However, a car would not be allowed 
to autonomously cross an intersection based on recognized traffic signs and its 
knowledge of priority rules because it cannot be guaranteed that each stop sign will be 
recognized correctly in every case.  

Alternatives to this strict refusal are being discussed [7][8]; one alternative could be 
to encapsulate functionality provided by such models and appropriately deal with the 
inherent uncertainty of their outcomes in the containing system by making use of de-
terministic and verifiable rules. In this setting, the containing system would be respon-
sible for adequate risk management, taking into account the likelihood that the outcome 
of the encapsulated model might be wrong, as well as the safety-related consequences 
of every decision made. In order to allow for informed decisions, encapsulated models 
would not only have to provide a given service but also describe as precisely as possible 
the uncertainty remaining in their outcomes. This means that the models would become 
dependable in a figurative sense, according to Avizienis et al.’s definition of systems 
[9], by delivering their service together with information about outcome-related uncer-
tainty that can justifiably be trusted. Based on this information, the containing system 
could, for example, decide to consider further information sources (as applied in sensor 
fusion) or adapt its behavior in order to handle the remaining uncertainty adequately. 
In our scenario of autonomous intersection crossing, the containing system could, for 
example, use GPS localization as an additional information source or slow down the 
vehicle, thereby buying time to analyze further images taken of the traffic situation. 

At present, model validation and testing commonly focus on determining and opti-
mizing the overall accuracy of the created model (cf. KAGGLE competitions, e.g., the 
ImageNet Challenges1). However, the models’ accuracy, which is commonly measured 
as error rate, is only a very generic and therefore weak estimator for the uncertainty 
remaining in a specific outcome, which is commonly referred to as prediction uncer-
tainty. For instance, an error rate of 0.54 % on a test dataset of traffic sign images [10] 
indicates that the respective model is 99.46 % confident of providing a correct outcome 
or, conversely, that it is 0.54 % uncertain on average. However, for use in safety-rele-
vant functions, this general statement is likely too coarse-grained. Although a reported 

1  https://www.kaggle.com/competitions 
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accuracy of 99.46 % is excellent, autonomous vehicles simply ignoring one of two hun-
dred stop signs might not be considered sufficiently safe. To be useful, more precise 
prediction uncertainty estimates are required that consider the situation at hand. For 
instance, fog or backlight conditions may affect the confidence in the provided out-
comes, as may dirt on the camera lens. Moreover, the question needs to be answered of 
whether the test dataset on which the accuracy of the model was determined matches 
the situation in which the model is currently being applied. 

In order to consider such sources of uncertainty during model development and test-
ing more systematically, an applicable framework and associated terminology would 
be needed in practice. We especially see the need for a practice-driven classification of 
the different sources of uncertainty that have to be addressed and quantified. Thus, this 
position paper proposes a sound and usable schema for classifying uncertainty sources 
that are relevant in AI/ML models. The main practical benefit is seen in establishing 
clear links between specific sources of uncertainty and activities performed during 
model development and testing, and thus the possibility to define concrete means for 
quantifying and dealing better with the various sources of uncertainty. 

The paper is structured as follows: Section 2 provides a short overview of existing 
classifications of uncertainty. Section 3 introduces the proposed classification, illus-
trates its application on an example, and discusses its implications. Section 4 closes the 
paper with an outlook on next steps. 

2 Related Work: Existing Classifications of Uncertainty 

In general, uncertainty is interpreted as “what is not known precisely”, but it can be 
characterized differently, e.g., by also considering its impact or causes. Thus, various 
taxonomies and classifications of uncertainty exist that provide different points of view 
on uncertainty, such as aleatoric vs. epistemic, irreducible vs. reducible, or the different 
kinds of inference that introduce them (e.g., predictive, statistical, or proxy) [11]. 

Mahdavi-Hezavehi et al. present a literature review and overview of different uncer-
tainty studies in the context of system architecture including uncertainty classifications 
comprising the dimensions location, nature, sources, and level/spectrum [12]. Further-
more, they propose a classification based on the source’s model (uncertainty caused by 
system models due to their abstraction, model drift, incompleteness, complexity, etc.), 
goals (uncertainty caused by a system’s goal-related complications such as outdated 
goals, goal dependencies, future goal changes, etc.), and environment (uncertainty 
caused by environmental circumstances including execution context, multiple owner-
ship, human involvement). Other uncertainty dimensions reported in the literature con-
sider resources (changing or new ones) or adaptation functions (automatic learning, 
sensing, decentralization, etc.). Further uncertainty types are reported by another study 
considering different publications: content, environment, geographical location, occur-
rence, and time [13].  

A detailed classification is provided in the context of simulation models by Kennedy 
and O’Hagan, who distinguish between parameter, parametric, structural, algorithmic, 
experimental, and interpolation uncertainty [14].  
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For safety-critical ML applications, Faria distinguishes between sources of output 
variation on the levels experience, task, algorithm, implementation, and hardware [15]. 

All these classifications can help to get a better understanding of the various aspects 
of uncertainty and may support practitioners in identifying important sources of uncer-
tainty in their context. However, they are hard to apply effectively in practice for rig-
orous prediction uncertainty quantification because their boundaries are not sharp (e.g., 
aleatoric vs. epistemic), because they cannot be reasonably quantified and distinguished 
in a practical AI/ML setting (c.f. the detailed classes of Kennedy and O’Hagan [13]), 
or because they have no direct links and implications for model building and testing.  

3 Sources of Uncertainty in AI/ML-Model Applications 

In order to introduce our classification, this section first illustrates common activities 
in the model building and testing process based on an example. Then the proposed 
classification is derived by highlighting and grouping major sources of uncertainty that 
occur in this process. Finally, implications of the proposed classification are discussed. 

3.1 Typical Process of Model Learning and Application 

Most development and testing of AI/ML models more or less explicitly follows an ad-
aptation of the CRISP-DM [16] approach, which was initially introduced by IBM and 
comprises the steps business/domain understanding, data understanding, data prepara-
tion, modeling, evaluation, and deployment. Next, we summarize the key activities in 
the process that are relevant for uncertainty in the model application outcomes and il-
lustrate them with an ongoing example.  

Based on a specific goal or problem statement, the planned scope of the model ap-
plication is defined. In our example, the scope could be traffic sign recognition in all 
possible driving conditions of a passenger car on public roads in the target market Ger-
many. Based on the scope definition, raw data is gathered in the relevant context to 
build and test the AI/ML model. In our example, such data could be images taken by 
cameras in pilot cars driving through Germany for several months, or an existing dataset 
such as the GTSRB dataset2 with more than 50,000 traffic sign images. In the next step, 
the raw data is typically filtered and preprocessed before being used as cleaned data to 
build and test the model because depending on the data source, raw data may suffer 
from various quality issues that would affect the final accuracy of the model. Moreover, 
preprocessing of the data makes them more accessible in modeling. In our example, 
images with specific problems could be filtered, such as very dark images, images with 
strong backlight conditions or massive lance flares, or blurred images. Preprocessing 
techniques include, among others, image normalization, Contrast Limiting Adaptive 
Histogram Equalization (CLAHE) [17], and Single-Image Super-Resolution (SISR) 
[18]. The clean data is separated into modelling and test data, with the modelling data 
being used to build and cross-validate the AI/ML model and the test data to evaluate 

2  http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset 
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the final model and determine how well the model fits previously unseen data. If the 
model is considered to be sufficiently accurate, it is deployed to productive use (e.g., as 
part of a driver assistance system) annotated with its error rate (e.g., 0.54 %). 

3.2 A Practice-Driven Classification of Uncertainty 

If we agree on the definition of prediction uncertainty as the likelihood that the provided 
outcome of a model may be wrong or outside a given range of accuracy, based on the 
model building and testing process, three major sources of uncertainty can be identified: 
scope compliance, data quality, and model fit. As we will discuss, the three uncertainty 
categories are stacked on top of each other; Fig. 1 presents an onion layer model.  

 
Fig. 1. Onion layer model of uncertainty in AI/ML application outcomes. 

Model fit. Uncertainty related to model fit is caused by the fact that AI/ML tech-
niques provide empirical models that are only an approximation of the real (functional) 
relationship between the model input and its outcome. The accuracy of this approxima-
tion, which is limited, e.g., due to the limited number of model parameters, input vari-
ables considered, and data points available to train the model, represents the model fit. 
Uncertainty caused by fitting deficits is commonly measured by the error rate, which is 
calculated when spitting the cleaned data into a training dataset and a test dataset.  

There are two important underlying assumptions regarding uncertainty caused by 
model fit. (1) The model is applied in a setting that is appropriately represented by the 
test dataset, which is true for the cleaned dataset from which the test data is typically 
randomly selected. (2) The model is built and applied on data on a homogeneously high 
quality level (i.e., the data does not suffer from quality issues), which is also more likely 
in a well-cleaned dataset. 

Implication: The average uncertainty caused by model fit can be measured using 
standard model evaluation approaches applied on high quality data and can be seen as 
a lower boundary approximation of the remaining uncertainty. 

Data quality. In a real setting, all kinds of data collected (e.g., based on sensors but 
also human input) is limited in its accuracy and potentially affected by various kinds of 
quality issues. The actual level of uncertainty in the outcome of an AI/ML model is 
thus affected by the quality (especially the accuracy) of the data on which it is currently 
applied. Therefore, additional uncertainty that is the result of a delta between the quality 
of the cleaned data and the data on which the model is currently being applied can be 
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defined as data quality (caused) uncertainty. In our example, confidence in the model 
outcome may be affected by a camera with lower resolution or a damaged lens as well 
as by difficult lighting and bad weather conditions such as rain or fog. 

Implication: Dealing with data quality uncertainty requires extending the standard 
model evaluation procedures with specialized setups to investigate the effect of differ-
ent quality issues on the accuracy of the outcomes in order to provide uncertainty ad-
justments for cases where the model is applied on data of below-nominal quality. As a 
consequence, data quality has be quantified and measured not only to annotate raw data 
with quality information during data preparation, but also to measure the current quality 
of the data after the model is deployed. 

Scope compliance. As we have seen, AI/ML models are built for and tested in a 
specific context. If these models are applied outside this context, their outcomes can 
become unreliable (e.g., because the model has to extrapolate). Therefore, the likeli-
hood that a model is currently being applied outside the scope for which it was tested 
can be defined as scope compliance (caused) uncertainty. In our example, the confi-
dence in the outcome of the model would be heavily affected if the model, which was 
trained and tested on German traffic signs, were applied in a country that does not fol-
low the Vienna Convention on Road Signs and Signals. Moreover, if the raw data used 
for model development and testing were collected between May and October, the test 
dataset would most likely miss images of traffic signs (partially) covered by snow.  

Implication: Scope compliance uncertainty can stem from two sources, as illustrated 
in the example: The model may be applied outside the intended scope or the raw dataset 
might not be representative of the intended scope. The former can be detected by mon-
itoring relevant context characteristics (in our example, e.g., GPS location, velocity, 
temperature, date, time of day) and comparing the results with the boundaries of the 
intended scope. In order to reason about the latter, raw data needs to be annotated with 
context characteristics (e.g., GPS location, velocity, temperature, date, time of day) in 
order to compare its actual and assumed distribution in the intended scope. 

4 Conclusion 

Distinguishing between the three types of uncertainties presented (model fit, data qual-
ity, scope compliance) is motivated from a practical point of view because each of these 
types requires specific means for detecting the related uncertainty and coping with it.  

Furthermore, the classification builds on existing ones and enables further focused 
uncertainty analysis by providing three clearly separated and measurable constructs. In 
a first approximation, prediction uncertainty can be determined by adjusting model-fit-
caused uncertainty with a data quality factor determined on the basis of the quality of 
the current input data and the probability of scope compliance. 

Building upon this classification, we plan to provide a practical framework for cap-
turing uncertainty when building and testing AI/ML models. Additionally, we are plan-
ning its evaluation in case studies to demonstrate its applicability and usefulness.  
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